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Abstract. The flow of a rarefied gas through tubes of circular cross-section and finite length, driven by arbitrarily large
gradients of pressure is simulated in a computationally efficient manner based on kinetic model equations. The governing
Ellipsoidal model kinetic equation is discretized in the phase space by a finite difference scheme and the discrete velocity
method. It is seen that good agreement is obtained with corresponding DSMC results in the literature. Due to the five-
dimensional nature of the problem, various techniques have been used to reduce the computational effort. Convergence
has been accelerated for small Knudsen flows using the Wynn-epsilon algorithm while memory usage optimization, grid
refinement and parallelization have been introduced. Overall, a highly efficient deterministic algorithm has been developed.
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INTRODUCTION

The simulation of rarefied flows is a challenging task with significant practical applications in several fields, such as
in vacuum [1, 2] and Micro Electronic Mechanical Systems (MEMS) [3, 4] industry. In practice, the gas may be close
or far from equilibrium in different positions of the same apparatus and approaches capable of dealing with multiple
levels of rarefaction are often required. The kinetic theory of gases is usually employed to deal with such problems
in a unified manner. As the complexity increases for high-dimensional problems, the Direct Simulation Monte Carlo
(DSMC) method [5] is usually preferred over the use of kinetic equations. However, this method is associated with
large computational effort, certain difficulties in the parallelization of the code and statistical noise for low speed flows,
while in the solution of high speed flows its performance is excellent. On the other hand, deterministic methods are
more appropriate for low Mach numbers, where the transport equations are simplified due to linearization and their
solution is obtained very efficiently due to the proposed acceleration schemes [6].

However, by implementing the non-linear form of collisional models, flows induced by arbitrarily large pressure
differences can also be studied as an alternative to DSMC. This type of treatment is applied here for the solution
of flow through a tube of finite length, driven by large gradients of pressure. An enhanced algorithm is proposed by
applying certain computational techniques. In particular, the total number of iterations is significantly reduced by the
Wynn-epsilon acceleration [7, 8], the code is parallelized and memory demands are reduced by proper handling of
the allocated arrays. The efficiency of the algorithm is described and a preliminary comparison with recently obtained
DSMC results [9] is provided. Our objective is to provide a fully deterministic algorithm for solving non-linear kinetic
equations and obtain results with computational efficiency similar to that of the DSMC method.

FORMULATION

Consider a monatomic rarefied gas stored in two large reservoirs connected by a cylindrical tube of radius R and
length L. An arbitrarily large pressure difference is imposed between the two containers, causing flow of the gas
through the tube. The two containers and the wall of the tube are maintained at the same temperature T0.

The geometry, consisting of the circular tube and efficiently large parts of the reservoirs, is displayed in Fig. 1. The
coordinate system in the physical space (r̂, ẑ) and the molecular velocity coordinate system (ξr,ξϑ ,ξz) are also shown
in the same figure. The symbol ϑ denotes the direction normal to the r̂− ẑ plane, while θ is the molecular velocity
angle in the r̂−ϑ plane. A cylindrical coordinate system (ξp,θ ,ξz) using ξr = ξp cosθ and ξϑ = ξp sinθ is preferred
here.



Figure 1. Flow configuration and coordinate system

The starting point is the ellipsoidal (ES) model kinetic equation [10] in cylindrical coordinates, expressed as
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with f = f (r̂, ẑ,ξr,ξϑ ,ξz) being the distribution function and ξi, i = r,ϑ ,z the components of the molecular velocity.
The collision term is retained in its non-linear form with
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]
(2)

where A =
[
(2kBT δi j)/(mPr)−2(1−Pr) P̂i j/(nmPr)

]−1, Pr is the Prandtl number, kB is the Boltzmann constant, m
is the molecular mass and δi j the Kronecker delta. Here, n, T , ûi are the number density, temperature and gas bulk
velocity components, respectively. By substituting Pr = 1 it can be seen that the BGK expression is retrieved. The
characteristic value for monatomic gases, Pr = 2/3, has been used in the following calculations.

The number density, pressure and temperature of the left reservoir are chosen as reference quantities and they are
denoted by n0,T0,P0 with P0 = n0kBT0. Then, all quantities of interest are non-dimensionalized as follows:
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2kBT0/m being the most probable molecular velocity and P̂i j being the stress tensor.
The collision frequency is given for Hard Sphere interaction by the expression
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where µ is the dynamic viscosity. The rarefaction parameter of the flow δ0 is also defined here as

δ0 =
RP0

µ0υ0
=

√
π

2
1

Kn0
(5)

with µ0 being the gas viscocity at reference temperature T0. The rarefaction parameter is proportional to the inverse of
the Knudsen number and therefore as δ0 is increased the atmosphere becomes more dense (or less rarefied). The cases
of δ0 = 0 and δ0→ ∞ correspond to the free molecular and hydrodynamic limits respectively.

The final form of the governing equation is
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where the dimensionless ES model term is
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with K = [τδi j− (1−Pr)Pi j/ρ]−1.
It is seen that the well known projection procedure can not be implemented here because all molecular velocity

components are required. Thus, in the following we have c2 = c2
p + c2

z . Furthermore, we only examine velocity angles
in θ ∈ [0,π] and assume the distribution is axisymmetrical.

The macroscopic quantities are also non-dimensionalized, leading to the following expressions:
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Vector/tensor components containing the ϑ -direction once, i.e. uϑ , prϑ , pzϑ ,qϑ , are zero, while pϑϑ is not. Pressure
can be easily derived by P = ρτ .

The inlet and outlet boundary distributions are Maxwellians. Due to the reference values selection, we have P0 = 1
for the left, Π = P1/P0 for the right container boundary distributions and τ = 1 at all boundary surfaces. Therefore, all
incoming molecules conform to a Maxwellian
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C

π3/2 exp
(
−c2) (9)

where C = 1 on the left container, C = Π on the right and C = ρw on the walls. The ρw constants are found by imposing
the impermeability condition at each wall
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where s= 1 for walls C,D and s=−1 for wall E. Specular reflection is imposed at the center due to the axial symmetry.

g+ (0,z,cp,θ ,cz) = g− (0,z,cp,π−θ ,cz)

for angles in θ ∈ [0,π/2].

THE NUMERICAL METHOD AND ITS OPTIMIZATION

The discrete velocity method is applied for the treatment of the molecular velocity space. The continuum spectrum
of cp and cz are discretized by the Legendre polynomial roots mapped in [0,cp,max] and [0,cz,max] respectively, while
the molecular velocity angles are uniformly distributed in [0,π] due to the axisymmetry.

The solution algorithm is an iterative procedure leading to the determination of the distribution function. At first, an
assumption is made for the macroscopic quantity profiles. This estimation is used in combination with the governing
equation to calculate the value of the distribution function. The distribution function is further used to generate new
values for the bulk quantities via the corresponding moments. Finally, these quantities are provided as feedback to
the governing equation to obtain new estimates and this procedure is repeated until a proper convergence criterion,
imposed on the bulk quantities, is satisfied.

The second order diamond difference scheme has been applied here, derived by integrating the governing equation
(6) in r,θ ,z in an arbitrary discretization interval, in the same way as in [7]. Due to the 1/r terms, this expression is
usable at r = 0 only after the application of the "De l’Hospital" rule.

The accuracy and convergence of the numerical method have been improved by the use of the Wynn-epsilon
algorithm [7, 8]. The Wynn-epsilon algorithm is a strongly nonlinear sequence accelerator, applied in regular iteration
intervals on the macroscopic quantities and the impermeability constants to obtain a converged solution faster. The
convergence of a sequence S j, j = 1, ...,J, can be accelerated by forming a tableau whose even columns are estimations
of the sequence limit
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with ε
( j)
−1 = 0 and ε

( j)
0 = S j. It is important to numerically monitor the values of each sequence and ensure that the

sequence is converging. The outcome of this examination is required in order to decide whether it is best to apply the
acceleration algorthm or not.

The application of the above technique can reduce the computational time by at least an order of magnitude near
the hydrodynamic regime. Furthermore, "false convergence" effects, appearing in large δ , are significantly reduced.
Finally, another important feature of this method is that it can also be easily applied with linearized kinetic equations
after some minor modifications.

Further computational optimizations can be obtained by noticing that the distribution functions of different velocity
magnitudes can be calculated independently from one another. This fact leads to a straightforward parallelization of the
code. Each processor solves the kinetic equation for a group of velocities and information on macroscopic quantities
and impermeability constants is exchanged between the processors at the end of each iteration. In this manner, the
transmition of the distribution is circumvented, greatly reducing the cost of parallel communication.

Memory handling techniques had also to be used to reduce storage requirements due to the five-dimensional nature
of the distribution function for this problem. Due to the velocity magnitude independency, a temporary array can be
allocated and overwritten after treating each magnitude. Furthermore, the dimensionality of this array can be reduced
even more by storing the distribution only in the parts of the domain required by the marching scheme of the discretized
governing equation. For example, for motion towards the positive z direction, the distribution is stored only at positions
z and z−∆z. These techniques permit having a two-dimensional array for the distribution function and practically
remove memory limitations. In this manner, tubes of any length can be considered, since the size of this array is only
determined by the height of the entrance/exit regions and the number of the molecular velocity angles.

The discretization parameters used are displayed in Table 1. It is noted that the initial grid contains 20 intervals per
unit length in every direction and 20 angle intervals in [0, Pi]. The simulations are initially performed with a smaller
amount of nodes and angles. After convergence has been reached, the simulation procedure is repeated in a refined
mesh, where the grid parameters have been doubled, using the previous solution as an initial condition. This procedure
is repeated until the final number of nodes and angles has been reached in order to avoid a large number of iterations for
the dense grid, leading to great savings for large values of δ . For the results shown here, the total number of physical
nodes in the final grid level may be up to 3.3×106. The average residual per computational node has been chosen as
the convergence criterion.

Table 1. Computational parameters

Final nodes per unit length 160
Final discrete angles in (0,π) 160
Discrete magnitudes cp and cz 16×16
Maximum value of velocity magnitude cmax 5
Convergence criterion 2.5×10−7

RESULTS

The main quantity of interest for the current problem is the mass flow rate through the tube, denoted by Ṁ. Its
dimensionless form is
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where the corresponding free molecular analytical result for flow through an orifice into vacuum Ṁ0 =
√

P0πR2/υ0 is
taken as a reference quantity. Results are presented here for the case L = R.

Comparison with DSMC results has shown very good agreement for both flow rates and macroscopic quantity
distributions. It is seen that the flow rates, presented in Table 2 for Π = 0.1 and 0.5, are within 2% agreement near the
free molecular and hydrodynamic regime and 6% in the transition regime with those found in [9]. It must be noted that
our purpose here is not to make a direct comparison with DSMC. Due to the existence of many DSMC algorithms and
the stochastic nature of the method, it is difficult to ensure that the comparison will take place on the same basis.

The required computational effort in hours and the gain in speed due to the parallelization are displayed in Fig. 2,
using a number of CPUs varying from 16 to 256. At all cases, the simulations are finished within a few tens of
hours at most, even with a low number of processors. The scaling characteristics of the algorithm are quite good,



considering the number of variables that have to be exchanged at each iteration. The speed-up S(n), defined as
S (n) = [t (8)×8]/ [t (n)×n] with n being the number of CPUs and t(n) the simulation time, is also displayed here.
An average efficiency of about 94% for 64 processors and 75% for 256 processors is calculated. It is expected that
parallelizing in the spatial coordinates as well would greatly reduce the cost of exchanging information, since only
a part of the domain would be stored at each computational node. Finally, it is noted that Wynn-epsilon acceleration
has not been applied while timing the simulations in order to obtain a more accurate picture of the performance of the
code.

The benefits of starting with a sparse grid and gradually refining it are seen in Table 3. The solution of each grid
level is used as an initial condition for the simulation of the next level. Linear interpolation has been used here as a first
approximation. It is clear that the gain in the number of iterations for large values of δ is significant. The iterations
in dense grids are two orders of magnitude lower than the corresponding sparse grid number, leading to much lower
simulation times.

The effect of Wynn-epsilon acceleration is demonstrated through an indicative case (δ = 10,Π = 0.1) shown in
Fig. 3. The evolution of the residual is plotted against the number of iterations for both a normal and an accelerated
run. Both cases follow the same course for the first 500 iterations, to allow for a transitional stage before applying the
acceleration scheme. Then, the sequence terms are collected every two iterations until 81 terms have been collected.
Finally, Equation (12) is applied at iteration 660 as shown in Fig. 3, causing an abrupt spike in the residual of the
accelerated run. However, after this step, the residual of the accelerated run drops dramatically, leading to convergence
in less than half the iterations required for a normal run. The algorithm proves to be quite useful near the hydrodynamic
regime, where a reduction in the number of iterations up to 75% has been observed in other problems for δ = 650 [7].

To sum up, an efficient algorithm for the solution of non-linear kinetic equations has been presented and applied
to the pressure driven isothermal flow through a circular tube. The flow rates and macroscopic quantities are in good
agreement with previously reported results obtained by the DSMC method. The computational effort and memory
demands are drastically reduced by the implementation of Wynn-epsilon acceleration, as well as memory usage
optimization, grid refinement and parallelization.

Table 2. Dimensionless flow rate G for isothermal pressure driven flow through a tube with
L/R = 1

δ 0.0 0.1 0.5 1.0 2.0 5.0 10.0 20.0

Π = 0.1 ES 0.605 0.619 0.665 0.712 0.786 0.930 1.05 1.16
DSMC 0.605 0.613 0.648 0.689 0.761 0.913 1.05 1.16

Π = 0.5 ES 0.336 0.347 0.384 0.427 0.503 0.689 0.883 1.04
DSMC 0.336 0.343 0.370 0.405 0.474 0.658 0.866 1.04

Table 3. Effect of grid refinement on the number of iterations

Grid Nodes per Velocity Iterations Iterations Iterations Iterations
level unit length angles for δ = 0.1 for δ = 1 for δ = 10 for δ = 20

1 20 20 12 77 1800 4746
2 40 40 5 12 72 149
3 80 80 5 9 49 83
4 160 160 4 7 37 63
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Figure 2. Total time (left) and speed up (right) for various δ and Π = 0.1

Figure 3. Wynn-epsilon effect on the residual for δ = 10,Π = 0.1
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